Group - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

i) The order and degree of the differential equation
$$\sqrt{\frac{dy}{dx}} + \frac{d^2y}{dx^2} + x = 1$$
 is

c)
$$\left(1,\frac{1}{2}\right)$$

d)
$$\left(\frac{1}{2},1\right)$$

ii) Family of curves $y = e^x (A\cos x + B\sin x)$ is represented by the differential equation

a)
$$\frac{d^2y}{dx^2} = \frac{2dy}{dx} - y$$

$$\checkmark$$
b) $\frac{d^2y}{dx^2} = \frac{2dy}{dx} - 2y$

c)
$$\frac{d^2y}{dx^2} = \frac{dy}{dx} - 2y$$

d)
$$\frac{d^2y}{dx^2} = \frac{2dy}{dx} - y$$

iii) Integrating factor of $x \frac{dy}{dx} - y = 1$ is

$$\checkmark$$
b) $\frac{1}{x}$

d)
$$-\frac{1}{r}$$

iv) The differential equation which has the singular solution is

a)
$$\frac{dx}{dy} = \frac{x}{y-3}$$

b)
$$\frac{dy}{dx} - 3y = y$$

a)
$$\frac{dx}{dy} = \frac{x}{y-3}$$
 b) $\frac{dy}{dx} - 3y = y$ c) $\frac{dy}{dx} - y = x$

d)
$$\frac{dy}{dx} - 2xy = x^2$$

Answer: none of these

v) The P.I. of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$ is

a)
$$\frac{e^x}{3}$$

b)
$$\frac{e^x}{2}$$

c)
$$\frac{e^x}{6}$$

vi) The auxiliary equation of the differential equation $\frac{d^2y}{dx^2} = \sin x$ is

$$\frac{d^2y}{dr^2} = \sin x \text{ is}$$

a)
$$y = \cos 2x + \sin 2x$$

b)
$$y = c_1 \cos 2x + c_2 \sin 2x$$

c)
$$y = c_1 \cos x + c_2 \sin 2x$$

vii) The sequence $\{(-$	-1)*} is		
a) convergent	√b) oscillatory	c) divergent	d) none of thes
	2, 3), (7, 3, a), (9, 4, 5) onot equal to	of a vector space R ³ over F	R be linearly independe
√a) 2	b) 3	c) 1	d) 0
ix) If $T(x, y, z) = (x, y, z)$	$(x, y, z) \in \mathbb{R}^3$ is	a linear transformation, the	en kernel of Tis
a) (0, 0, 0)	b) X-axis		✓d) Z-axis
x) T is a transformatio	n from R ₂ to R ₃ defined b	y $T(x_1, x_2) = (x_1, x_1^2 + x_2, -x_2)$	then the image
2) is	ng Marasara) - (~1,~2) (~1,~1 · ~2, ~	y, then the image of (1
a) (1, 1, 1)	b) (0, 3, -1)	√c) (1, 3, −1)	d) (0, 0, 0)
xi) If $(3,1) = x(1,2) + 1$	-y(0,3) , then the values	of x and y are respectively	y 1, Tal.
a) 3,-5	b) 3,1 daP	✓c) $3, -\frac{5}{3}$	d) $3, -\frac{5}{2}$
xii) Union of two subs	paces of a vector is a		a designation of the party
a) subspace of thec) none of these	e vector space	✓b) not a subspace of	
		wind to allow the great	
	(oup – B r Type Questions)	
2. What is an exact of	differential equation? If $\left(\right)$	$y + \frac{1}{x} + \frac{1}{x^2 y} dx + \left(x - \frac{1}{y} + \frac{A}{xy^2}\right)$	$\frac{1}{2}dy = 0 \text{ is exact, then}$
find the value of A. See Topic: DIFFEREN	TIAL EQUATIONS, Shor	t Answer Type Question No. 1	0. 10 10 20Th
3. Solve the differentia	al equation $(D^3 - 2D^2 - 5D^2)$	$D+6\big)y=e^{4x}.$	7.10
See Topic: DIFFEREN	ITIAL EQUATIONS, Long	Answer Type Question No. 11	j.
		a strictly monotonic decreasi	
Show that the sequen	$ce \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is monotor	nic increasing sequence.	n entrepara de

See Topic: SEQUENCE, Short Answer Type Question No. 7.
B MII-130

5. Test the convergence of the series $\sum_{n=1}^{\infty} \left\{ \sqrt{n^2 + 1} - n \right\}$

See Topic: SERIES, Short Answer Type Question No. 15.

6. What is a coordinate vector? What is the coordinate vector of $(3,5,-2) \in \mathbb{R}^3$ relative to the basis $\{(1,2,3),(2,0,1),(1,-1,0)\}$?

See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 23.

Group - C

(Long Answer Type Questions)

- 7. a) Explain degree and order of a differential equation with example,
- b) Find the general and singular solutions of $y + xp p^2x^4 = 0$, where $p = \frac{dy}{dx}$.
- c) Show that the sequence $\left\{2 + \frac{(-1)^n}{x}\right\}$ is convergent.
- a) & b) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 18(a) & (b).
- c) See Topic: SEQUENCE, Long Answer Type Question No. 7.
- 8. a) Solve the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2 + e^{3x}$$
, given that $y = 0$, $\frac{dy}{dx} = 2$, when $x = 0$.

- b) Show that the sequence $\sqrt{7}$, $\sqrt{7+\sqrt{7}}$, $\sqrt{7+\sqrt{7}+\sqrt{7}}$ converges to 7.
- c) If $T:R^3 \to R^3$ is given by T(x,y,z) = (x-2y,y-2z,z-2x), for $(x,y,z) \in R^3$, obtain the matrix representation for linear transformation T.
- a) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 19.
- b) See Topic: SEQUENCE, Long Answer Type Question No. 8.
- c) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 3.
- 9. a) State Leibnitz theorem for alternating series and test the convergence of the series $\frac{1}{1} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
- b) Test the convergence of the following series $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{2^3} + \frac{1}{3^3} + \dots$

FUPULAR PUBLICATIONS

- finite dimensional vector $W = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0, 2x - y + 3z = 0\}$ is a subspace. Find dimension and a basis of space
- a) & b) See Topic: SERIES, Long Answer Type Question No. 9(a) & (b).
- c) See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 2 & Long Answer Type Question
- 10. a) Define linearly dependence of a set of finite number of vectors. Find the value of x such that the vectors (1, 2, 1), (x, 3, 1) and (2, x, 0) are linearly dependent.
- b) Show that intersection of two subspaces is a subspace.
- c) Find the integrating factor of the differential equation $x\cos xdy + y(x\sin x + \cos x) = dx$.
- a) See Topic: LINEAR ALGEBRA, Long Answer Type Question No. 1.
- b) See Topic: LINEAR ALGEBRA, Short Answer Type Question No. 21.
- c) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 20.

11. a) Solve
$$(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$$
.

- b) Obtain the differential equation for $x^2 + y^2 + 2gx + 2fy + c = 0$.
- c) Test the convergence of the following series:

$$1 + \frac{2^2}{3^2}x + \frac{2^2 \cdot 4^2}{3^2 \cdot 5^2}x^2 + \frac{2^2 \cdot 4^2 \cdot 6^2}{3^2 \cdot 5^2 \cdot 7^2}x^3 + \dots (x \neq 1).$$

- a) & b) See Topic: DIFFERENTIAL EQUATIONS, Long Answer Type Question No. 21(a) & (b).
- c) See Topic: SERIES, Long Answer Type Question No. 12.